
JOURNAL OF COMPUTATIONAL PHYSLCS 11, 449-454 (1973)

Note

Construction of the Hamiltonian Matrix in
Large Configuration Interaction Calculations*

Large-scale scientific calculation on today’s most powerful computers makes
balanced use of three types of computational capacity; (a) the speed of the central
processing unit (CPU); (b) the capacity of peripheral storage which must carry
large data sets, especially temporary data sets generated as intermediate results
in the course of computation; and (c) the speed of data transfer between peripheral
storage and the high speed storage connected to the CPU (channel speed).
Characteristics (b) and (c) define the input-output (IO) capability of the computing
system. It must be recognized that use of these three resources goes hand-in-hand
and that much scientific computation makes severe demands on (IO) devices and
channels. The old image of scientific computation as solely “number crunching”
has been made completely invalid by increases in CPU power, which are inevitably
associated with increased storage demands that require working with large
peripheral data sets. A critical parameter, for example, in evaluating a computa-
tional algorithm involving the processing of elements stored in a peripheral data
set, is the number of CPU cycles completed in the time that it takes one word to
come through a data channel (after transmission through the channel has been
initiated).

An important point is that balanced use of CPU power, peripheral storage
and channel data rates, with current capabilities, have forced the use of direct
access data sets to break bottlenecks in scientific computation which did not
exist several years ago. Direct access data sets mean lists of data, any element of
which can be accessed in a time characteristic of the direct access storage device
(such as a magnetic drum or magnetic disk) and independent of the length of the
data list. These are to be compared with sequential access data sets, in which an
element can be accessed only after passing over all elements between the desired
one and the one last accessed. Use of direct access storage makes possible the

* This research was supported in part by the Advanced Research Projects Agency of the De-
partment of Defense under Contract No. DAHC04 69 C 0080, monitored by U. S. Army Research
Office, Box CM, Duke Station, Durham, 27706.

449
Copyright 0 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.

450 YOSHIMINE

simultaneous processing of more than one long data list by making afixed number
of passes over the lists, minimizing the amount of data transmitted through the
data channels, whereas sequential access to the same lists can require a number of
passes proportional to the length of the lists of data. Minimizing IO may require
sorting steps in which the output data list of a previous step is reordered for
efficient use in a succeeding step. This would be the case, for example, when
elements of an output list from a previous step, needed sequentially in a succeeding
step, are scattered through the entire list.

This note will describe a computing algorithm for the construction of the
Hamiltonian matrix in the space of a large number of n-electron configurations.
This problem arises in performing configuration interaction (CI) calculations,
which approximate the electronic states of a system of n-electrons as the solutions
of the secular equation

(H-E)C=O. (1)

Elements of the Hamiltonian matrix H in Eq. (1) are

HI., = [drl ... drn @,*HQJ,
Y (2)

whereas in Eq. (2), Q1, QJ are n-electron configurations, and are members of an
orthonormal set of n-particle functions, which are constructed from an orthonormal
set of one particle functions (orbitals), with members & determined in an earlier
stage of computation. In terms of matrix elements over orbitals, we have that

In Eq. (3),

(i 1.i) = j do &* (- i V2 - ; Z&J) +,j

is a one-electron matrix element between orbitals of the Hamiltonian operator
for one electron moving in the coulombic field of a set of nuclei A, with charge
Z, , where Y.., is the distance of the electron from nucleus A. Integrals (ij j kl) are
given by

(9 I kl) = j dvl dv2 A*(l) A(l) d1~*(2) 51G9/r12 (5)

and are two-electron matrix elements of the coulombic repulsion between pairs
of electrons. These one- and two-electron matrix elements are available from an
earlier stage of computation. The coefficients C,,,ij , C,J,ijkl are also determined
in an earlier computational stage; they depend on the form of configurations

LARGE CONFIGURATION INTERACTION 451

Z, J, which are linear combinations of Slater determinants having the symmetry
of the electronic state under consideration, each with some specified angular
momentum coupling of the electrons.

Thus, in the computational problem being addressed here, we are combining
a coefficient list containing Cl,,, and C,,#,,, and an integral list containing (i 1 j)
and (ij 1 kl) according to Eq. (3). This process produces the list of matrix elements
HIJ . To put the magnitude of the problem into perspective, we are concerned with
H matrices of dimension of the order of thousands (up to 103 having several
million nonzero elements (the only ones stored) computed from integral lists and
coefficient lists, each containing millions of elements. With high speed storage
availability enough to store of the order of 30 000 elements in total, it is clear that
all three lists under discussion are kept on peripheral storage.

ALGORITHM

A discussion of the computing algorithm will be simplified by changing the
notation of the introduction, where the physical problem was described.

Thus, the coefficient list will be denoted C,,, where the double index ZJ, labeling
a Hamiltonian matrix element HIJ, has been contracted to the single index P.
Since, in general, many matrix elements HI, are identically zero, only the nonzero
elements of HI, will be stored. P = 1, 2, 3 ,... corresponds to (ZJ), , (ZJ)z, (ZJ), ,...
where the index pairs (ZJ)P correspond to nonzero elements of HIJ in the desired
order for storing HIJ.

The integral list, available from a previous step and denoted Xo , is ordered in
such a way that the position Q in the list can be determined from the orbital
indices labeling the integral.

Equation (3) the computational procedure to be carried out by this algorithm,
can now be rewritten

HP = 1 G.&~J.

0

In carrying out the summation, Eq. (6), we will put as big a block of consecutive
members of the integral list X, into fast memory as possible, with substantially
smaller storage requirements for other data. Suppose that N,, is the size of this
block, then the integral list will be divided into [(NX - 1)/N,,] + 1 blocks, all but
the last block containing N,, elements. Each block of integrals, serially numbered
by index IZ, is processed completely by evaluating the contributions HP,n to HP
according to

H P,n (9

452 YOSHIMINE

where Qn runs over indices Q in block n. In a later step, we sum contributions
from the different blocks by

HP = cHp.n. (8)
12

The summation of Eq. (7) followed by that of Eq. (8) is obviously equivalent to
the desired result, Eq. (6). Remembering that the coefficient list is ordered to
increasing P, it is clear that to complete the summation of Eq. (7) we need coeffi-
cients distributed through the entire length of the coefficient list. Since this must
be done as many times as we have blocks, n, we would have to read the coefficient
list a number of times proportional to the length of the integral list. This can be
reduced to a single read if the coefficient list is first reordered .so that all coefficients
with Q values Qn , belonging to the integral block n, are collected together; i.e.,
we reorder to C,,, n ordering to increasing n, and for a given n retaining the original
ordering of increasing P.

Thus, the implementation of Eq. (6) will be done as a three-step process:

(1) Reorder C,, to C,,, 11 ;
(2) Carry out HP,n = Co n Cp,Q, x0,, Eq. (7);
(3) Carry out HP = xn HP,n, Eq. (8).

These three steps will now be described in detail.

Step 1: Reorder C,,, to Cp,Q,

Elements of the coefficient list C,,, are used sequentially, and can therefore be
stored on magnetic tape.

Suppose the number of blocks into which the integral list is divided in carrying
out Eq. (7) is N. Then, in this first step available fast storage is divided into N
buffers, the nth of which will receive coefficients Cp,c, required for processing the
nth block of integrals. C,,, is now read sequentially, each element dropped into
the appropriate buffer, and any time a buffer is filled it is written out as a record on
direct access storage. Each record written out will contain the record number of the
last record written out which was associated with the same IE value; i.e., the records
for a given IZ are backwards chained. An index of the last record written out for
each IZ value will be retained in fast storage. Records belonging to a given n value
will be randomly distributed through the direct access data set; since it is direct
access, they can be efficiently retrieved. This is a key point, because in the next
step, each C,., will be read only once; without the availability of direct access
each element would be read N times, a cost which can be prohibitive.

The next step can be done using Cp,c, from the direct access storage. However,
since the same CI calculation may be carried out many times, for different nuclear
geometries for example, it is usually best to transfer the Cp,a, to tape, ordering

LARGE CONFIGURATION INTERACTION 453

the records to increasing n. Thus, in the next step these can be used sequentially
and the original list C,,, is no longer needed. There is another advantage in
writing the CP,o, onto tape, and that is that it greatly decreases the requirement
for direct access storage in a run. If a run involves Step 1 (reordering coefficients)
and Step 3 [Eq. (S)], direct access storage requirements are dictated by the size
Of cP,Q,- If only Step 3 is involved, direct access requirements are for the much
shorter list Hp,n . We will therefore assume the cp,Qn written onto tape.

The IO activity of Step 1 is one sequential read (cp,Q in), one direct access
write with no random access (emptying buffers), one direct access read with
random access (reading cp,Q, back in order of n), and one sequential write (CPsQ,
out). We reiterate that Step 1 is done only once for a series of CI calculations
using the same configurations.

Also, remember that the cp,Q were originally ordered to increasing P. The
process just described will result, for a given n, in the record with highest P values
being accessed first, but in the record the ordering to increasing P is retained.

Step 2: Evaluate HP,% , Eq. (7)

Available fast storage will be largely taken up by the block XQ, of the integral
list, around which this algorithm has been designed. Additional fast storage must
be assigned for one record of Cp,c,, and a single Hptn buffer. Records of Cp,o,
will be read in, one at a time, for the current yz value. A buffer for Hp,n will be
filled from the end first to decreasing P, processing the cp,Q, from the end of a
record to the beginning. Hpsn buffers written into direct access are backward
chained as in the first step. Analysis of the order will show that first Hp.% available
on reading will contain the lowest P values stored to increasing order.

The IO activity of Step 2 is two sequential reads (cp,Q, in, X0, in), and one
direct access write no random access (Hp,n out).

Step 3: Evaluate HP , Eq. (8)

In this step, available fast memory is mostly assigned to the largest block of the
Hamiltonian matrix that can be accommodated. Additional fast memory must be
assigned to one HP,n record. This block will receive elements from HP,,, to HP .
One record at a time is read from the direct access HP,n . For the first block of”t”hXe
H matrix we read the records for all n from the first available up to the one
containing Hp,,,n for this block. For the second block of the H matrix, the record
which contained HP max,n for the first block is the one containing HP,,,, for the
second block so that reading of HP,, is resumed by rereading the last record
needed for the first block. After each block of H is completed, it is written out
into a sequential access data set. The process continues until the H matrix is
completed.

581/11/3-IO

454 YOSHIMINE

The IO activity in this step is one direct access read with random access (Hp,n in)
and one sequential write (H, out).

EXTENDED ALGORITHM

For very large calculations, it may be the case that the direct access storage
availability is not enough to accommodate the CP,Q, during the sorting stage of
Step 1. A trivial modification of the algorithm will handle this case. In Step 1,
run through as many CPs, as can be accommodated in the available direct access
storage, and write Ckr,)on . Now continue processing C,,, until direct access is
refilled, and write Cg”L , etc. Repeat steps 2 and 3 for each CL”, where ~1 indexes
the number of writes’ii Step 1.

* ?a

DISCUSSION

The importance of this algorithm is that it minimizes the amount of IO in
evaluating the Hamiltonian matrix. The number of words transmitted through
the data channels is independent of the amount of fast storage available. The only
dependence on fast storage capacity is the integral list block lengths, and buffer
lengths associated with CP,c,. Once the fast storage is large enough to accom-
modate buffer lengths to produce records that optimally conform to the character-
istics of the direct access decive, there is no significant added efficiency from
increased fast storage. Thus, fast storage requirements are modest.

These algorithms have been used extensively in the ALCHEMY computer
programs1 with up to 5000 configurations. We anticipate that calculations of this
size, and larger, will be routine, particularly as efficient diagonalization procedures
for the lowest roots of the Hamiltonian matrix are developed.

ACKNOWLEDGMENT

The author is indebted to A. D. McLean for his critical reading of the manuscript.

RECEIVED: May 1, 1972
M. YOSHIMINE

IBM San Jose Research Laboratory,
San Jose, California 95114

1 An algorithm for determining these matrix elements, using similar sorting techniques has
been devised by the author. A description may be found in A. D. McLean, “Potential Energy
Surfaces from ab initio Computation: Current and Projected Capabilities of the ALCHEMY
Computer Program,” Proceedings of the Conference on Potential Energy Surfaces in Chemistry,
Publication RA18, IBM Research Library, San Jose, CA, 1971.

